Fault Detection and Isolation Based on Neural Networks Case Study: Steam Turbine
نویسندگان
چکیده
The real-time fault diagnosis system is very important for steam turbine generator set due serious fault results in a reduced amount of electricity supply in power plant. A novel real-time fault diagnosis system is proposed by using Levenberg-Marquardt algorithm related to tuning parameters of Artificial Neural Network (ANN). The model of novel fault diagnosis system by using ANN are built and analyzed. Cases of the diagnosis are simulated. The results show that the real-time fault diagnosis system is of high accuracy and quick convergence. It is also found that this model is feasible in real-time fault diagnosis. The steam turbine is used as a power generator by SONELGAZ, an Algerian company located at Cap Djinet town in Boumerdes district. We used this turbine as our main target for the purpose of this analysis. After deep investigation, while keeping our focus on the most sensitive parts within the turbine, the weakest and the strongest points of the system were identified. Those are the points mostly adequate for failure simulations and at which the designed system will be better positioned for irregularities detection during the production process.
منابع مشابه
Robust Fault Detection on Boiler-turbine Unit Actuators Using Dynamic Neural Networks
Due to the important role of the boiler-turbine units in industries and electricity generation, it is important to diagnose different types of faults in different parts of boiler-turbine system. Different parts of a boiler-turbine system like the sensor or actuator or plant can be affected by various types of faults. In this paper, the effects of the occurrence of faults on the actuators are in...
متن کاملCondensation Power Turbine Control System Tolerating Instrumentation Faults
An application of development of fault tolerant control (FTC) system for condensation turbine has been presented in the paper. The tolerance of instrument faults has been achieved by the use of functional redundancy which consists in performance of appropriate changes in the operation manner of the faulty system. The method of fuzzy neural networks (FNN) has been used for fault detection and is...
متن کاملRobust Model- Based Fault Detection and Isolation for V47/660kW Wind Turbine
In this paper, in order to increase the efficiency, to reduce the cost and to prevent the failures of wind turbines, which lead to an extensive break down, a robust fault diagnosis system is proposed for V47/660kW wind turbine operated in Manjil wind farm, Gilan province, Iran. According to the acquired data from Iran wind turbine industry, common faults of the wind turbine such as sensor fault...
متن کاملImproving Data-based Wind Turbine Using Measured Data Foggy Method
The purpose of this paper is to improve the modeling of the data-driven wind turbine system that receives data from noise signals. Most of the data on industrial systems is noisely and data noise is inevitable and natural. The method and idea proposed in this paper, Data Fogging, significantly reduce the impact of noise on data-driven wind turbine system modeling, which is the basis of this met...
متن کاملA distributed Intelligent Agent Architecture for Gas-Turbine Engine Health Management
Control and Health Monitoring of complex systems such as Gas-Turbine Engines can potentially receive great benefits from the use of advanced software technologies. However, techniques such as Intelligent Agents, Neural Networks and Genetic Algorithms are predominately designed to optimally perform specific functions, while the rest of the functionality is better achieved using conventional tech...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011